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Abstract
Utilizing the quantum statistical operator algebra technique, we derive a new
absorption coefficient formula for the optical transition in a system of electrons
interacting with longitudinal optical phonons in a quantum well. The electron
and phonon distribution functions are included in the lineshape function. So
we can explain the phonon absorptions and emissions in an organized way for
all the electron transition processes. The numerical results show that the width
decreases with the well width and increases with the temperature.

1. Introduction

With the recent progress in modern crystal growth techniques [1], such as molecular beam
epitaxy (MBE) and metal–organic chemical vapour deposition (MOCVD), it has become
possible to grow semiconductors of different atomic compositions on top of a semiconductor
substrate with monolayer precision. Among those low-dimensional systems, semiconductor
optoelectronic devices, such as laser diodes, optical waveguides, and photodetectors, have
important applications in optical communication systems. In order to understand the physics
and the operational characteristics of these optoelectronic devices, we need to develop a
quantum statistical method.

Optical spectral features such as gain and spontaneous emission are the most basic
properties of semiconductor lasers [2–11]. Among the many factors determining an optical
spectrum, e.g., the carrier distribution in the energy bands, the matrix elements for the
transitions between electrons and holes, and the rate of relaxation of carriers due to various
scattering processes, we are interested in the last one.

There are many quantum statistical methods applied in these areas [2–5]. The present
group has introduced some many-body theories for transport phenomena [12–14]. These
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theories were obtained by applying several projection techniques [15–17] and were applied in
the calculation of the linewidth in magneto-optical transitions in semiconductors. In this paper,
by utilizing one such theory [14], we will introduce a new theoretical method for obtaining the
relaxation rate for a system of electrons interacting with phonons.

2. Formal solution of the Liouville equation

When a time-dependent external electric field

E(t) = E0 exp[−i(ωt − kx)]ẑ + complex conjugate (2.1)

is applied in the z-direction, the total Hamiltonian H (t) is given by

H (t) = Heq + Hint(t). (2.2)

Here Heq is the Hamiltonian of a system of many electrons interacting with phonons (or
electrons) in thermodynamic equilibrium and Hint(t) is the time-dependent part given by

Hint(t) = −P · E(t) = −
∑
αβ

(R)αβa+
αaβ E0 exp(−iωt) + complex conjugate (2.3)

where P = ∑
αβ(R)αβa+

αaβ is the polarization vector,R is the dipole moment operator,a+
α (aα)

denotes the creation (annihilation) operator for an electron in the state |α〉 with energy Eα and
(X)αβ ≡ 〈α|X |β〉.

We assume that when the time-dependent electric field is applied to the system, the density
operator changes as

ρ(t) = ρeq + ρint (t) (2.4)

where ρeq is the equilibrium density operator and ρint (t) is the term for the perturbation by the
time-dependent electric field. Using the Liouville equation

ih̄
∂ρ(t)

∂ t
= [H (t), ρ(t)] = L(t)ρ(t) (2.5)

we can obtain

ih̄
∂ρint (t)

∂ t
= [Heq, ρint (t)] + [Hint(t), ρeq ] + [Hint(t), ρint (t)] (2.6)

where we have used the facts that ∂ρeq/∂ t = 0 and [Heq, ρeq ] = 0. In equation (2.5), L(t) is
the Liouville operator defined as L(t)X ≡ H (t)X − X H (t) for a arbitrary operator X . L(t)
can be split into two parts, for the sake of calculational convenience: L(t) = Leq + Lint(t),
where Leq and Lint , respectively, correspond to Heq and Hint .

In order to obtain ρint (t), we define the density operator in the Dirac picture as

ρD
int (t) ≡ exp(iHeqt/h̄)ρint(t) exp(−iHeqt/h̄). (2.7)

Differentiating equation (2.7) and considering equation (2.6), we obtain

ih̄
∂ρD

int (t)

∂ t
= exp(iLeq t/h̄)Lint (t)ρeq + exp(iLeq(t)/h̄)Lint(t)ρint (t). (2.8)

Integrating this differential equation from t = −∞ to t subject to the initial condition
ρD

int (−∞) = 0, we can obtain a solution to this equation:

ih̄ρD
int (t) =

∫ t

−∞
du exp(−iLequ/h̄)[Lint(u)ρeq ] +

∫ t

−∞
du exp(iLeq u/h̄)[Lint(u)ρint (u)].

(2.9)
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Now, on inserting equation (2.7) into (2.9) and replacing t − u by t1, we get

ρint (t) = 1

ih̄

∫ ∞

0
dt1 exp(−iLeq t1/h̄)[Lint (t − t1)ρeq ]

+
1

ih̄

∫ ∞

0
dt1 exp(−iLeq t1/h̄)[Lint(t − t1)ρint(t − t1). (2.10)

Finally we obtain by iteration

ρint (t) =
∞∑

n=1

1

(ih̄)n

∫ ∞

0
dt1

∫ ∞

0
dt2 · · ·

∫ ∞

0
dtn exp(−iLeq t1/h̄)Lint (t − t1)

× exp(−iLeq t2/h̄)Lint (t − t1 − t2)

× · · · × exp(−iLeq tn/h̄)Lint (t − t1 − · · · − tn)ρeq

≡ ρ(1)(t) + ρ(2)(t) · · · ρ(n)(t) (2.11)

where Lint (t) is involved n times in ρ(n)(t).
Using equation (2.11), we obtain the ensemble average of the polarization operator P as

follows:

P(t) =
∞∑

n=1

P(n)(t) =
∞∑

n=1

TR{ρ(n)(t)P} (2.12)

where TR means the many-body trace.
Here we are interested in the linear absorption spectra. Thus we only have to take the first

order of P(t), which is given by

P(1)(t) = TR{Pρ(1)(t)}
= −1

ih̄

∑
αβ

(R)αβ

∫ ∞

0
ds TR{exp[is(Leq + h̄ω̄)/h̄]P[a+

αaβ, ρeq]}E0e−iωt

or

P(1)(t) ≡ χ(ω)E0eiωt (2.13)

where ω̄ ≡ ω + ia (a → 0+). The first-order susceptibility tensor is defined by

χ(ω) ≡ −
∑
αβ

(R)αβ

∑
γ δ

(R)γ δ Aαβ(ω̄). (2.14)

Here

Aαβ(ω̄) ≡ TR{ρeq [(h̄ω̄ + Leq)
−1a+

γ aδ, a+
αaβ] (2.15)

where we used TR{A[B, C]} = TR{C[A, B]}. Equation (2.14) will be used in deriving the
absorption coefficient later.

3. Review of absorption coefficient in linear scheme

The optical gain coefficient G is given by [3, 4]

G = ω

nr

√
µ0

ε0

1

E0T0
Im

∫ T0

0
P(t)eiωt dt (3.1)

where ω is the angular frequency of the incident electric field, nr is the refractive index, µ0

and ε0 are the permeability and permittivity of the vacuum, respectively, T0 is the period of the
light wave and the notation ‘Im’ means the imaginary part.
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Inserting equation (2.13) into (3.1), we obtain

G = − ω

nr

√
µ0

ε0
Im

∑
αβ

∑
γ δ

(R)αβ(R)γ δ Aαβ(ω̄). (3.2)

Now, in order to calculate Aαβ(ω) further, we define the projectors P and Q as

P X ≡ 〈X〉
〈a+

γ aδ〉a+
γ aδ (3.3)

Q ≡ 1 − P (3.4)

where

〈X〉 ≡ TR{ρeq[X, a+
αaβ]}. (3.5)

Applying the identity 1 = P + Q in the right-hand side of the Liouville operator Leq in
equation (2.15) as Leq = Leq(P+Q) and using the identity (A+B)−1 = A−1−A−1 B(A+B)−1,
we obtain

(h̄ω̄ + Leq)
−1a+

γ aδ = a+
γ aδ/h̄ω̄ − (h̄ω̄ + Leq Q)−1 Leqa+

γ aδ A1(ω)/〈a+
γ aδ〉 (3.6)

where we used Pa+
γ aδ = a+

γ aδ and Qa+
γ aδ = 0. Considering Leq as Leq = Ld + Lv in

the second term on the right-hand side of equation (3.6), where Ld and Lv are the Liouville
operators corresponding to the Hamiltonians Hd (diagonal part) and V (nondiagonal part),
respectively, we obtain

(h̄ω̄ + Leq)
−1a+

γ aδ = a+
γ aδ/h̄ω̄ − (Eγ − Eδ)a

+
γ aδ A1(ω)/h̄ω̄〈a+

γ aδ〉
− Lva+

γ aδ A1(ω)/h̄ω̄〈a+
γ aδ〉 + Leq Q(h̄ω̄ + Leq Q)−1 Lva+

γ aδ A1(ω)/h̄ω̄〈a+
γ aδ〉.

(3.7)

Here we used Ld a+
γ aδ = (Eγ − Eδ)a+

γ aδ. Therefore

Aαβ(ω) = 〈a+
γ aδ〉

h̄ω̄ + (Eγ − Eδ) + 
αβ − �αβ(ω)
(3.8)

where the lineshape functions 
 and �(ω) are defined as


αβ ≡ 〈Lva+
γ aδ〉/〈a+

γ aδ〉 (3.9)

�αβ(ω) ≡ 〈Leq Q(h̄ω̄ + Leq Q)−1 Lva+
γ aδ〉/〈a+

γ aδ〉. (3.10)

In the next section, we will use equation (3.10) in order to derive the absorption coefficient in
a system of electrons interacting with longitudinal optical (LO) phonons.

4. Lineshape function for an electron–phonon system in a quantum well

We consider a system of electrons interacting with phonons confined in the quantum well. The
equilibrium Hamiltonian Heq = Hd + V is given by

Hd = He + Hp =
∑

α

〈α|h0|α〉a+
αaα +

∑
q

h̄ωq b+
q bq (4.1)

V =
∑

q

∑
α,µ

Cα,µ(q)a+
αaµ(bq + b+

−q) (4.2)

where

Cα,µ(q) = Vq〈α|exp(iq · r)|µ〉. (4.3)
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Here, b+
q (bq) denotes the creation (annihilation) operators for a phonon in the state |q〉 ≡ |q, s〉,

where q and s, respectively, are the phonon wavevector and polarization index; h̄ωq is the
phonon energy, Cα,µ(q) is the electron–phonon interaction matrix element, Vq is the coupling
factor which depends on the mode of the phonons, and r is the electron position vector. The
distance between the barriers, assumed infinitely high, is Lz . Assuming that the wavefunction
vanishes at z = 0 and Lz , the eigenfunction �α(r) and the corresponding eigenvalue Eα of
the single-electron Hamiltonian h0 are given by

�α(r) ≡ �n jk‖(r) = unk(r) exp(ik‖ · r‖)n j(z)/
√

A (4.4)

n j (z) = √
2/Lz sin( jπz/Lz), j = 1, 2, 3, . . . (4.5)

Eα ≡ Enjk‖ = E0 j 2 + k2
‖h̄2/2mn (4.6)

where E0 ≡ h̄2π2/2mn L2
z , A is the interface area of the sample, unk(r) is the periodic part of

the bulk Bloch function, n is the band index, k‖ and r‖ are the wavevector and position vector
parallel to the well interface, respectively. mn is the effective mass in the band n.

In order to calculate equations (3.9) and (3.10) further, we make use of the following
relation:

TR{ρeq(H )[L QX, a+
αaβ]} = TR{ρeq(H )[Lva+

αaβ, X]} − TR{ρeq(H )[Lv P X, a+
αaβ]} (4.7)

where we have taken into account of the fact that ρeq(H ) commutes with H and TR{ABC} =
TR{BC A}. Thus equation (3.10) becomes

�αβ(ω) = TR{ρeq(H )[Lva+
αaβ, (h̄ω̄ + Leq Q)−1 Lva+

γ aδ]}/〈a+
γ aδ〉

− 〈Lva+
γ aδ〉TR{ρeq(H )[(h̄ω̄ + Leq Q)−1 Lva+

γ aδ, a+
αaβ]}/(〈a+

γ aδ〉)2. (4.8)

Now we will make the approximation that ρeq(H ) ≈ ρeq(Hd), assuming that the interaction
is quite weak. Then


αβ = 0 (4.9)

because the ensemble averages of bq and b+
q are zero.

�αβ(ω) ≈ TR{ρ(Hd)[Lva+
αaβ, (h̄ω̄ + Ld)

−1 Lva+
γ aδ]}/〈a+

γ aδ〉 (4.10)

in the approximation to second order of the scattering potential.
In equations (3.8) and (3.10), the quantity 〈a+

γ aδ〉 is given by

〈a+
γ aδ〉 ≡ TR{ρeq [a+

γ aδ, a+
αaβ]} = ( fβ − fα)δγβδδα. (4.11)

Here fα = 1/[1 +exp{(Eα − EF )/kB T ] is the Fermi–Dirac distribution function for electrons,
where EF is the quasi-Fermi level of conduction or the valence band.

Therefore, using equations (3.2), (3.8) and (4.9)–(4.11), we obtain

G = − ω

nr

√
µ0

ε0
Im

∑
α,β

|(R)αβ |2 fβ − fα
h̄ω̄ + (Eβ − Eα) − �αβ(ω)

(4.12)

where

�αβ(ω) ≈ TR{ρeq[Lva+
αaβ, (h̄ω̄ + Ld)

−1 Lva+
βaα]}/( fβ − fα). (4.13)

After systematic calculation using equations (4.1) and (4.2), we obtain

Lva+
αaβ =

∑
q

∑
γ

(bq + b+
−q)[Cγ,α(q)a+

γ aβ − Cβ,γ (q)a+
αaγ ] (4.14)

Ld bqa+
αaβ = (Eα − Eβ − h̄ωq)bqa+

αaβ (4.15)

Ld b+
−qa+

αaβ = (Eα − Eβ + h̄ω−q)bqa+
αaβ. (4.16)

Inserting these equations into equation (4.13), we obtain
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�αβ(ω)( fα − fβ)

=
∑

q

∑
γ

|Cβ,γ (q)|2
[

(1 + Nq ) fα(1 − fγ )

h̄ω̄ + (Eγ − Eα) + h̄ωq
− Nq fγ (1 − fα)

h̄ω̄ + (Eγ − Eα) + h̄ωq

+
Nq fα(1 − fγ )

h̄ω̄ + (Eγ − Eα) − h̄ωq
− (1 + Nq) fγ (1 − fα)

h̄ω̄ + (Eγ − Eα) − h̄ωq

]

+
∑

q

∑
γ

|Cα,γ (q)|2
[

(1 + Nq) fγ (1 − fβ)

h̄ω̄ + (Eβ − Eγ ) + h̄ωq
− Nq fβ(1 − fγ )

h̄ω̄ + (Eβ − Eγ ) + h̄ωq

+
Nq fγ (1 − fβ)

h̄ω̄ + (Eβ − Eγ ) − h̄ωq
− (1 + Nq ) fβ(1 − fγ )

h̄ω̄ + (Eβ − Eγ ) − h̄ωq

]
(4.17)

where Nq = 1/[exp(h̄ωq/kB T ) − 1] is the Planck distribution function for a phonon with
energy h̄ωq . Equation (4.17) is our new formula, which is similar to those for some other
theories [3, 4], but our result can be interpreted in a more organized way since we have
derived the result using the quantum statistical many-body projection technique. The physical
interpretation is as follows: the first term represents the transition of the electron from the state
α to the intermediate state γ with phonon emission. Here, 1 + Nq appears as the condition
for phonon emission and fα(1 − fγ ) as that for the transition α → γ . |Cβγ (q)|2 means
that the intermediate state γ is disturbed by the interaction with phonons. The energy term
h̄ω̄ + Eγ − Eα + h̄ωq enforces energy conservation, i.e., Eα = h̄ω̄ + Eγ + h̄ωq . All seven other
terms in equation (4.17) can be explained in a similar manner.

Therefore, inserting equation (4.17) into (4.12), the absorption coefficient can be obtained
as

G = − ω

nr

√
µ0

ε0

∑
α,β

|(R)αβ |2 ( fβ − fα)γβα(ω)

[h̄ω + (Eβ − Eα) − �βα(ω)]2 + [γβα(ω)]2
. (4.18)

Here the lineshift function �βα(ω) and the linewidth function γβα(ω) are defined as

�βα(ω)( fα − fβ) ≡ Re{�αβ(ω̄)( fα − fβ)} =
∑

q

∑
γ

|Cαγ (q)|2
{

[(1 + Nq ) fγ (1 − fβ)

− Nq fβ(1 − fγ )] P

(
1

h̄ω + (Eβ − Eγ ) + h̄ωq

)

+ [Nq fγ (1 − fβ) − (1 + Nq) fβ(1 − fγ )] P

(
1

h̄ω + (Eβ − Eγ ) − h̄ωq

)}

+
∑

q

∑
γ

|Cβγ (q)|2
{

[(1 + Nq) fα(1 − fγ )

− Nq fγ (1 − fα)] P

(
1

h̄ω + (Eγ − Eα) + h̄ωq

)

+ [Nq fα(1 − fγ ) − (1 + Nq ) fγ (1 − fα)] P

(
1

h̄ω + (Eγ − Eα) − h̄ωq

)}
(4.19)

and

γβα(ω)( fα − fβ) ≡ Re{�αβ(ω̄)( fα − fβ)} = π
∑

q

∑
γ

|Cαγ (q)|2{[(1 + Nq) fγ (1 − fβ)

− Nq fβ(1 − fγ )]δ(h̄ω + (Eβ − Eγ ) + h̄ωq)

+ [Nq fγ (1 − fβ) − (1 + Nq) fβ(1 − fγ )]δ(h̄ω + (Eβ − Eγ ) − h̄ωq)}
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+ π
∑

q

∑
γ

|Cβγ (q)|2{[(1 + Nq ) fα(1 − fγ )

− Nq fγ (1 − fα)]δ(h̄ω + (Eγ − Eα) + h̄ωq)

+ [Nq fα(1 − fγ ) − (1 + Nq ) fγ (1 − fα)]δ(h̄ω + (Eγ − Eα) − h̄ωq)}. (4.20)

Here we have used the Dirac identity lims→0+(x + is)−1 = P(1/x) − iπδ(x), where ‘P’ means
Cauchy’s principal value.

5. Lorentzian approximation and relaxation rate

In this section, we assume that �βα(ω) can be neglected in comparison with Eα − Eβ

because we consider a very weak scattering effect and we adopt the approximation that
γβα(ω) ≈ γβα(Eα − Eβ) = γβα(Eαβ), i.e., we assume that it is a very slowly varying function
of ω near the resonance point (ω = Eα−Eβ). With these approximations, from equation (4.18)
the absorption coefficient, equation (4.18), is given by

G = ω

nγ

√
µ0

ε0

∑
α,β

|(R)αβ |2 ( fα − fβ)γβα(Eαβ)

(h̄ω − Eαβ)2 + [γβα(Eαβ)]2
. (5.1)

Here, from equation (4.20) we have the halfwidth γβα(Eαβ):

γβα(Eαβ)( fα − fβ) = π
∑

q

∑
γ

|Cαγ (q)|2{[(1 + Nq) fγ (1 − fβ)

− Nq fβ(1 − fγ )]δ(Eα − Eγ + h̄ωq)

+ [Nq fγ (1 − fβ) − (1 + Nq) fβ(1 − fγ )]δ(Eα − Eγ − h̄ωq)}
+ π

∑
q

∑
γ

|Cβγ (q)|2{[(1 + Nq ) fα(1 − fγ )

− Nq fγ (1 − fα)]δ(Eγ − Eβ + h̄ωq)

+ [Nq fα(1 − fγ ) − (1 + Nq ) fγ (1 − fα)]δ(Eγ − Eβ − h̄ωq)}. (5.2)

In order to derive the interband relaxation rate, first the subscripts α and β are rewritten as cjk‖
and v j ′k′

‖, where c and v refer to conduction and valence bands, respectively. j and j ′ are the
subband numbers of a quantum well structure, and k‖ and k′

‖ are the wavevectors parallel to
the well interface. In the matrix elements (R)αβ , we assume that the selection rules j = j ′
and k‖ = k′

‖ hold for the transition between the levels α and β [18]. Then we have

γcv(Ecv) = π
∑

q

∑
n jnk‖

|Ccn(q)|2/[ f (Ev jk‖) − f (Ecjk‖)]

× {[(1 + Nq) f (Enjnkn
‖ )(1 − f (Ev jk‖))

− Nq f (Ev jk‖)(1 − f (Enjnkn
‖ ))]δ(Ecjk‖ − Enjnkn

‖ + h̄ωq)

+ [Nq f (Enjnkn
‖ )(1 − f (Ev jk‖)) − (1 − Nq) f (Ev jk‖)(1 − f (Enjnkn

‖ ))]

× δ(Ecjk‖ − Enjnkn
‖ − h̄ωq)}

+ π
∑

q

∑
n jnk‖

|Cvn(q)|2/[ f (Ev jk‖) − f (Ecjk‖)]

× {[(1 + Nq) f (Ecjk‖)(1 − f (Enjnkn
‖ )) − Nq f (Enjnkn

‖ )(1 − f (Ecjk‖))]

× δ(Enjnkn
‖ − Ev jk‖ + h̄ωq)

+ [Nq f (Ecjk‖)(1 − f (Enjnkn
‖ )) − (1 − Nq ) f (Enjnkn

‖ )(1 − f (Ecjk‖))]

× δ(Enjnkn
‖ − Ecjk‖ − h̄ωq)}. (5.3)
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Here n = c or v and

|Cαn(q)|2 = |Vq〈α|exp(iq · r)|n〉|2

= V 2
q δ(k‖,kn

‖ + qn
‖ )δαn

∣∣∣∣
∫

n j(z) exp(iqzz)n jn(z) dz

∣∣∣∣
2

. (5.4)

For the interaction matrix element Cβα(q), we take into account the screening effect as
follows:

V 2
q = e2h̄ωl

2ε0


(
1

ε(∞)
− 1

ε(0)

)
q2

(q2 + q2
d )2

(5.5)

where 
 is the volume of the system, ε(∞) and ε(0), respectively, are the optical and static
dielectric constants, h̄ωl the energy of the LO phonon, qd the reciprocal of the Debye screening
length.

6. Numerical result

The linewidths for the interband transition in the GaAs/Ga1−x Asx Al quantum well will be
calculated numerically for the one-subband case ( j = 1 and jn = 1) at the subband edge
(k‖ = 0). For that purpose, considering the delta functions in equations (5.3) and (5.4), we
obtain

γcv(Ecv) = 1

4π h̄2

√
h̄mc

2ωl

∫
dqz |Vc(q)|2qc

‖/[ f (Ev10) − f (Ec10)]

× {[(1 + Nq) f (Ec1qc
‖ )(1 − f (Ev10)) − Nq f (Ev10)(1 − f (Ec1qc

‖ ))]}

+
1

4π h̄2

√
h̄mh

2ωl

∫
dqz |Vv(q)|2qv

‖/[ f (Ev10) − f (Ec10)]

× {[(1 + Nq) f (Ec10)(1 − f (Ev1qv‖ )) − Nq f (Ev1qv‖ )(1 − f (Ec10))]}. (6.1)

Here

f (Enjk‖) = 1

1 + exp[(Enjk‖ − E f n)/kB T ]
(6.2)

where

En1qn
‖ = h̄2π2

2mn L2
z

+
(h̄qn

‖ )2

2mn
(6.3)

qn
‖ = (1/h̄)

√
2mnh̄ωl . (6.4)

The parameters are as follows [19, 20]:

mc = 0.067 m0, mlh = 0.087 m0, mhh = 0.5 m0, ε(0) = 12.53,

ε(∞) = 10.90, Eg = 1.424 eV, ωl = 2π × 8.76 × 1012 Hz

where m0 is the free electron mass.
Figure 1 shows the well width dependence of the halfwidths for the one-subband case

( j = jn = 1) at the subband edges (k‖ = 0) for GaAs/Ga1−x AsxAl quantum well structures.
As we can see, the width decreases with the well width, which is physical. Note that the
scattering is reduced as the dimension is increased in general, as long as no other potential is
involved. Figure 2 shows the temperature dependence of the halfwidth, which is also physical.
Note that the same tendency appears in cyclotron transitions and interband magneto-optical
transitions [14]. We see that the widths increase with the temperature. We can interpret this
increase as being caused by the phonon distribution.
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Figure 1. The well width dependence of the halfwidth at the subband edges for GaAs/Ga 1−x Asx Al.

Figure 2. The temperature dependence of the halfwidth at the subband edges for
GaAs/Ga1−x Asx Al.

7. Concluding remarks

We have derived a new absorption coefficient formula for the optical transition in a system
of electrons interacting with phonons by using the operator algebra technique. The lineshape
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function appearing in the absorption coefficient is similar to those in some other theories [3, 5],
but our result contains the electron and phonon distribution more phenomenologically.
Therefore, all the possible processes of electron transitions along with phonon absorptions
and emissions could be explained properly in compliance with the energy conservation law
and the conditions for optical transitions in solids. The numerical results show that the width
decreases with the well width and increases with the temperature, as we could easily guess. It
is to be regretted that the result cannot be checked in a satisfactory way, since no experimental
data are available for this problem. Studies on electron–electron interaction and the second-
order term in equation (2.12), which gives us the Raman interaction [21], will be performed
in the future.
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